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The slow advective-timescale dynamics of the atmosphere and oceans is referred
to as balanced dynamics. An extensive body of theory for disturbances to basic
flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based
on wave-activity invariants and nonlinear stability theorems associated with exact
symmetry-based conservation laws. In attempting to extend this theory to the semi-
geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral
boundary contributions to the SG wave-activity invariants which are not present in
the QG theory, and which affect the stability theorems. However, because of technical
difficulties associated with the SG model, the analysis of Kushner & Shepherd was
not fully nonlinear.

This paper examines the issue of lateral boundary contributions to wave-activity
invariants for balanced dynamics in the context of Salmon’s nearly geostrophic model
of rotating shallow-water flow. Salmon’s model has certain similarities with the SG
model, but also has important differences that allow the present analysis to be carried
to finite amplitude. In the process, the way in which constraints produce boundary
contributions to wave-activity invariants, and additional conditions in the associated
stability theorems, is clarified. It is shown that Salmon’s model possesses two kinds
of stability theorems: an analogue of Ripa’s small-amplitude stability theorem for
shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd’s SG
stability theorem in which the ‘subsonic’ condition of Ripa’s theorem is replaced by a
condition that the flow be cyclonic along lateral boundaries. As with the SG theorem,
this last condition has a simple physical interpretation involving the coastal Kelvin
waves that exist in both models.

Salmon’s model has recently emerged as an important prototype for constrained
Hamiltonian balanced models. The extent to which the present analysis applies to
this general class of models is discussed.

1. Introduction
In studying the dynamics of atmospheric and oceanic flows, theorists have found it

useful to consider reduced models of the governing equations that filter fast degrees of
freedom such as acoustic and inertia–gravity waves, leaving only the slow advective-
timescale dynamics associated with nonlinear vortical motion and Rossby waves.
Such reduced models, frequently referred to as ‘balanced’ models, are more amenable
to theoretical analysis than are the underlying ‘primitive’ equations. This notion of
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dynamical reduction onto a slow manifold can be formalized in terms of a slaving
ansatz (e.g. Warn et al. 1995).

When a dynamical regime is characterizable in terms of certain dimensionless
parameters, it may be possible to obtain a balanced model as the leading-order
system in an asymptotic perturbation expansion in one or more small parameters.
For example, one may obtain in this way quasi-geostrophic (QG) dynamics when
the Rossby and Froude numbers are small and the characteristic lengthscale L is
sub-planetary, planetary geostrophic dynamics when the Rossby number is small and
L is much greater than the Rossby deformation radius, and two-dimensional semi-
geostrophic dynamics when the horizontal flow is anisotropic (see e.g. Pedlosky 1987).
The last regime includes the special case of low-frequency coastally trapped waves.

Each of the three dynamical models mentioned above captures a range of im-
portant physical phenomena, and together they provide the basis for much of our
theoretical understanding of large-scale atmospheric and oceanic flows. However, the
assumption made in each case of a single well-defined parameter regime is extremely
restrictive: in reality, large-scale atmospheric and oceanic flows contain a number of
mutually interacting dynamical regimes, even within the context of slow dynamics.
An atmospheric example is the development of a semi-geostrophic front within a
quasi-geostrophic baroclinic disturbance. An oceanic example is the development of
quasi-geostrophic eddies within a planetary geostrophic gyre circulation. Yet nobody
has been able to derive a balanced model capable of describing multiple dynamical
regimes within the framework of a formal asymptotic theory.

An alternative approach to obtaining balanced models is to impose a set of dynam-
ical constraints a priori, based on observed characteristics of the flow. (The distinction
between this approach and the asymptotic one is not, perhaps, as great as it might
seem: any choice of small parameters, including the assumption of slow dynamics,
is similarly based on observed characteristics of the flow.) Probably the best-known
example of such a model is the three-dimensional f-plane semi-geostrophic (SG)
model of Hoskins (1975), which has been widely used in meteorology. A particularly
attractive feature of the SG model is that for small Rossby and Froude numbers (and
weak topography) it reduces to (f-plane) QG dynamics, while for anisotropic flows it
reduces to two-dimensional SG dynamics; thus it can describe the formation of fronts
within developing QG baroclinic systems, provided the fronts are not strongly curved.
The SG model also describes the dynamics of low-frequency coastally trapped waves
(Allen, Barth & Newberger 1990a; Kushner, McIntyre & Shepherd 1997), which obey
anisotropic scaling and are thus semi-geostrophic provided the coast is not strongly
curved (see also §2).

In deriving reduced models, it is arguable (Lorenz 1960; Sadourny 1975; Salmon
1983) that one should preserve the fundamental symmetry-based conservation laws
of the underlying primitive equations. Such conservation laws underpin much of our
theoretical understanding of dynamical models, and provide a unifying link between
different models. This is particularly the case for the considerable body of theory con-
cerning disturbances to prescribed basic states, including available potential energy,
wave-activity invariants, and stability theorems (e.g. Holm et al. 1985; McIntyre &
Shepherd 1987; Shepherd 1990, 1993). In the case of stability theorems, for example, it
turns out that virtually all of the classical inviscid linear stability theorems (e.g. static
stability, symmetric stability, Rayleigh’s inflection-point and centrifugal-stability the-
orems, and the Fjørtoft–Pedlosky and Charney–Stern theorems) may be understood
in this broader context, and may furthermore be extended to finite amplitude (see
e.g. Shepherd 1994). One can argue that leading-order asymptotic approximations
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will inevitably preserve symmetry-based conservation laws; this argument has been
formalized by Bokhove (1996, Chapter 4). For constrained models no such property
is guaranteed, unless the constraints are imposed within the context of a Hamiltonian
description of the dynamics (Salmon 1983). Of course, Hamiltonian structure in itself
is no guarantee of a model’s accuracy.

Salmon (1985) showed how the f-plane SG model could be derived within a
Hamiltonian framework, and could be generalized to include variable Coriolis pa-
rameter (see also Shutts 1989; Magnusdottir & Schubert 1990, 1991). By exploiting
the relevant conservation laws, Kushner & Shepherd (1995a, b) were able to extend
much of the disturbance theory that exists for QG dynamics to SG dynamics. (They
considered the f-plane SG model as well as the β-plane compressible SG model of
Magnusdottir & Schubert 1990.) One of the novel features of the SG theory is the
appearance of lateral boundary contributions to the wave-activity invariants, which
affect the stability theorems. These lateral boundary contributions are associated with
the presence of coastally trapped waves, which are filtered in the QG model. Kushner
et al. (1997) have shown that the impact of the boundary terms on the stability the-
orems reflects a genuine physical instability mechanism associated with these coastal
waves.

The work of Kushner & Shepherd (1995a, b) appears to be the first to deal
with lateral boundary contributions to wave-activity invariants in a balanced model,
and with their effect on stability theorems. However, the SG model has a number of
complicating features and the analysis of Kushner & Shepherd is mathematically quite
tortuous. In particular, the SG model is most naturally formulated in a transformed
coordinate system, but this transformation produces moving boundaries. In addition,
the SG invertibility relation between geostrophic velocity and potential vorticity is
extremely complicated. As a consequence, Kushner & Shepherd had only limited
success in extending their small-amplitude results to finite amplitude. It was not
clear whether this difficulty was merely technical, or whether it reflected something
deeper. Moreover, the way in which lateral boundary contributions arise within the
SG wave-activity invariants remains somewhat mysterious (see Kushner & Shepherd
1995b, §6).

It is therefore of interest to examine the nature of lateral boundary contributions to
wave-activity invariants within the context of a constrained balanced model that has
simpler mathematical properties than the SG model yet contains the essential physics.
Salmon’s (1983) model of nearly geostrophic dynamics is a natural choice for such a
study. Like the SG model, it describes multiple dynamical regimes: quasi-geostrophic
dynamics, planetary geostrophic dynamics, anisotropic semi-geostrophic dynamics,
and low-frequency coastally trapped waves. Since it is derived within a Hamiltonian
framework, it automatically possesses appropriate symmetry-based conservation laws.
The model may be formulated for stratified flow, but to simplify the analysis (in order
to focus on the physics) we follow Salmon (1983) and restrict attention to the
shallow-water context.

It has recently become evident that Salmon’s (1983) model is an important prototype
for constrained Hamiltonian balanced models. The model is derived by constraining
the velocity to the mass field within the framework of Hamilton’s principle. As a
consequence, the advecting velocity differs from the (constraint) velocity that appears
in the conservation laws. (This is a property of many reduced systems, including
the hydrostatic equations.) In Salmon’s (1983) model the constraint velocity is taken
to be the geostrophic velocity, but it is clear from Salmon’s construction that other
(potentially more accurate) choices are also possible. Both Allen & Holm (1996) and
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McIntyre & Roulstone (1997) have recently developed this idea and proposed general
theories for deriving constrained Hamiltonian balanced models that explicitly rely on
just such a velocity ‘split’. Salmon’s (1983) model – referred to in those studies as ‘HP
dynamics’ and ‘L1 dynamics’, respectively – turns out to occupy a central role in both
theories.

In this paper, we derive wave-activity invariants for Salmon’s (1983) model and
use those invariants to obtain nonlinear stability theorems. The model is described
in §2, including a clarification of the lateral boundary conditions. The analysis then
follows, first for general steady basic flows (§3), and then for steady basic flows having
zonal or rotational symmetry (§4). It is shown that Salmon’s model possesses an
analogue of Ripa’s (1983) small-amplitude stability theorem for shallow-water flow,
as well as finite-amplitude analogues of Kushner & Shepherd’s (1995a, b) SG stability
theorems. In the process, the way in which the geostrophic constraint produces
boundary contributions to wave-activity invariants is clarified. The implications for
more general constrained Hamiltonian balanced models are discussed in §5.

2. Governing equations and boundary conditions
For the purpose of this paper, the ‘primitive’ equations are taken to be the rotat-

ing shallow-water equations; this system arguably represents the simplest model in
geophysical fluid dynamics that contains the essential physics of nonlinear vortical
motion coupled to fast (in this case inertia–gravity) waves. The governing equations
are given by (e.g. Pedlosky 1987)

∂u

∂t
+ qhẑ × u = −∇

(
gη + 1

2
|u|2
)
, (2.1a)

∂h

∂t
+ ∇ · (hu) = 0, (2.1b)

where u(x, y, t) is the (horizontal) velocity, η(x, y, t) is the free-surface height, h(x, y, t) =
η−hB is the fluid depth, hB(x, y) is the bottom topography, q ≡ [f+ ẑ · (∇×u)]/h is the
potential vorticity, g is the (constant) gravitational acceleration, f(y) is the Coriolis
parameter, ẑ is the unit vertical vector, and ∇ ≡ (∂/∂x, ∂/∂y) ≡ (∂x, ∂y), where x
and y are respectively eastward (zonal) and northward (meridional) coordinates.
Various domain geometries D may be considered: closed, open, or periodic in one
or two directions. In the case of an open (unbounded) domain, appropriate decay
conditions are assumed to apply at infinity. In the case of a periodic domain, all
integral quantities are averaged in the periodic coordinate. At any rigid boundary,
the boundary condition is simply that of no normal flow:

u · n̂ = 0 on ∂D (n̂ = outward normal to boundary ∂D). (2.2)

This system conserves an energy

H =

∫
1
2

(
h|u|2 + gη2

)
dx, (2.3)

as well as a family of Casimirs

C =

∫
hC(q)dx, (2.4)

where C(·) is an arbitrary function. The Casimir invariants are a consequence of the
material conservation of potential vorticity, qt + u · ∇q = 0, which follows from (2.1);
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the total mass invariant
∫
hdx corresponds to C ≡ 1. When the domain (boundaries

and bottom topography) is zonally symmetric, then the system conserves a zonal
absolute momentum

M =

∫
h
(
u− F(y)

)
dx, (2.5)

where u ≡ (u, v) and F(y) ≡
∫
f(y)dy; the constant of integration for F is irrelevant

in (2.5), because of conservation of total mass. When the domain is rotationally
symmetric (this requires f(y) = const) then the system conserves an absolute angular
momentum

J =

∫
h
(
w + 1

2
fr2
)

dx, (2.6)

where w ≡ ẑ · (x × u) and r2 = x2 + y2. Finally, using (2.1a) together with (2.2) one
can derive conservation of circulation on each connected (either closed or periodic)
piece ∂Di of the boundary:

dΓi
dt
≡ d

dt

∮
∂Di

u · d` = 0, (2.7)

where d` is tangent to the boundary, oriented so that n̂ is on the right.
Salmon’s (1983) model retains all the above conservation laws, with the full velocity

u replaced in all expressions (including that for q) by the geostrophic velocity

uG ≡
g

f
ẑ × ∇η =

g

f
ẑ × ∇(h+ hB). (2.8)

These conservation laws are enforced by setting u = uG within the context of Hamil-
ton’s principle. (Salmon 1983 only explicitly considered H and C, but conservation
ofM, J, and Γi also follows.) Note that in order for Salmon’s model to be physically
meaningful, we must have f 6= 0 everywhere in the domain. The evolution equations
that result from this procedure† are the full mass equation (2.1b), but with (2.1a)
replaced by

∂uG
∂t

+ qhẑ × u = −∇
[
gη + 1

2
|uG|2 + ẑ · ∇×

(ghuAG
f

)]
, (2.9)

where uAG ≡ u − uG is the ageostrophic velocity, and now q ≡ [f + ẑ · (∇ × uG)]/h. It
should be noted that the two scalar equations represented by (2.9) are not independent
prognostic (evolution) equations; because uG is determined by h, only one of the three
equations (2.1b) and (2.9) can be used as a prognostic equation, with the other two
providing the constraints required to determine uAG (see Appendix A). Thus Salmon’s
model is a balanced model, of first order in time; this reflects the fact that the
inertia–gravity wave solutions of shallow-water dynamics have been eliminated.

In order to provide a unique determination of uAG in the presence of rigid bound-
aries, another boundary condition on the velocity is required in addition to (2.2) (see
Appendix A). Allen et al. (1990a) propose

uAG × n̂ = 0 on ∂D (n̂ = outward normal to boundary ∂D), (2.10)

which is sufficient (together with periodicity or decay conditions as the case may
be) to enforce conservation of (the geostrophic version of) H. The condition (2.10)
may be deduced directly from Hamilton’s principle (R. Salmon, unpublished notes;
Allen & Holm 1996), and not surprisingly, therefore, it is also sufficient to enforce

† The equations for variable hB were first recorded by Allen et al. (1990a).
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conservation of M, J, and Γi. (C is automatically conserved by virtue of (2.2).)
However, it is important to determine the conditions under which (2.10) is accurate.
The component of the primitive momentum equation (2.1a) normal to the boundary
can be written

− V Dχ

Dt
+ fV = gn̂ · ∇η, (2.11)

where V is the tangential velocity, χ is the angle the boundary (and hence the
flow) makes with a fixed direction, and D/Dt is the material derivative. For straight
boundaries, Dχ/Dt = 0 and the tangential flow is therefore strictly geostrophic,
making (2.10) exact. For curved boundaries, Dχ/Dt = −V/R where R is the local
radius of curvature of the boundary. Thus (2.10) provides a good approximation to
(2.11) whenever |V |/fR � 1. This weak-curvature condition is precisely that under
which the SG approximation is valid (Hoskins 1975).

Note that uG is not required to be tangent to rigid boundaries; only u is. This
corresponds to the situation with SG dynamics (Kushner & Shepherd 1995a), and
is an important distinguishing feature with respect to QG dynamics. In particular,
this feature allows the representation of coastal Kelvin waves, which are filtered in
QG dynamics. Since coastal Kelvin waves are semi-geostrophic in the literal sense of
being geostrophically balanced in one direction, it is appropriate that they should be
represented in these models.

3. Steady basic flows without presumed spatial symmetry
For Hamiltonian systems, it is well known that steady states are constrained

extremals of the energy, the constraint being imposed through a suitable Casimir.
Thus one may generally construct exact finite-amplitude invariants that are quadratic
to leading order in the disturbance to a given steady state. Following McIntyre &
Shepherd (1987), we refer to disturbance invariants having this general property as
wave-activity invariants; in the special case considered in this section, the wave-activity
invariant is known variously as the free energy, pseudoenergy, or energy-Casimir
invariant. See Holm et al. (1985) or Shepherd (1990) for further background.

The application of this method to Salmon’s model turns out to be straightforward,
so technical details are kept to a minimum. We consider disturbances (u′G, u

′
AG, h

′) to a
steady basic flow (UG,UAG,H); hence h = H + h′, etc. The basic flow is presumed to
be a steady solution of Salmon’s model. Thus (2.1b) implies ∇·HU = 0, and one may
introduce a mass stream function Ψ defined by HU = ẑ × ∇Ψ . Then (2.9) implies

Q∇Ψ = ∇B, (3.1)

where B and Q denote the generalized Bernoulli function and potential vorticity
evaluated at the steady basic flow, namely

B ≡ gN + 1
2
|UG|2 + ẑ · ∇×

(
gHUAG

f

)
, (3.2a)

Q ≡ f + ẑ · (∇×UG)

H
, (3.2b)

with N ≡ H + hB .
In the usual way, the energy, Casimir, and circulation invariants of Salmon’s model



Nonlinear stability theorems for balanced dynamics 293

may be combined to construct the exact invariant

A[H; h] ≡
(
H+ C+

∑
i

λiΓi

)
[h]−

(
H+ C+

∑
i

λiΓi

)
[H]. (3.3)

In (3.3), the sum over i runs over all connected pieces ∂Di of the boundary, and λi
are free parameters; all conserved quantities are functionals of the height field alone,
in the light of (2.8) and (A 1)–(A 2), so we may write H[h], etc. The form of the
Casimir and the parameters λi are determined by the choice of the basic flow through
the extremal condition δA = 0. This may be seen (see Appendix B) to lead to

C(ξ) = ξ

(∫ ξ

0

K(γ)

γ2
dγ + c

)
(c is an arbitrary constant) (3.4)

and

λi = −C ′(Q)

∣∣∣∣
∂Di

, (3.5)

where the function K(·) is defined by

B(x, y) = K
(
Q(x, y)

)
∀ (x, y). (3.6)

Since both B and Q are constant along lines of constant Ψ (this follows from (3.1) and
the fact that U · ∇Q = 0), the function K(·) is well defined by (3.6) provided ∇Q 6= 0
almost everywhere. (The case where Q(x, y) is piecewise constant would require a
different approach.) In general, the function K(·) so defined will be multivalued, but
our pseudoenergy-based stability theorems will apply only to single-valued K(Q) so
this issue will not concern us. The condition (3.5) can likewise be satisfied, because
each connected piece of the boundary must be a line of constant Ψ and thus a line
of constant Q.

There is one non-trivial technical detail that should be mentioned at this point,
because it has implications for more general constrained Hamiltonian balanced mod-
els. Steady flows in Salmon’s model must generally have UAG 6= 0, unless the flow
is straight. (To see this, suppose a steady flow was strictly geostrophic. Then (2.9)
would reduce to (2.1a) with U replaced by UG. But then (2.11) would apply at all
points in the domain, with V equal to the geostrophic velocity and n̂ normal to the
flow. This would imply Dχ/Dt = 0, namely straight flow.) But then δC involves UAG,
while δ(H+

∑
i λiΓi) does not, and it is not obvious that the extremal condition will

be satisfied. This issue can be expected to be generic for velocity-split models (see §5).
However, if one computes δA with (3.4) and (3.5), noting from (3.6) that

C ′(Q) =
C + B

Q
and ∇C ′(Q) =

∇B
Q
, (3.7)

then after using (3.1) and noting the cancellation of the terms involving N and UG

one is left with

δA =

∫ {
−BAGδh− ẑ ·

(
∇ΨAG × δuG

)}
dx (3.8a)

=

∫ {
−BAG + ∇ ·

(g
f
∇ΨAG

)}
δhdx−

∑
i

∮
∂Di

g

f
∇ΨAG · n̂δhds, (3.8b)

where BAG is the difference between B and the usual Bernoulli function evaluated
for the geostrophic flow (i.e. the first two terms of (3.2a)), and ΨAG is defined by
HUAG = ẑ×∇ΨAG. In order for the interior terms in (3.8b) to vanish for arbitrary δh
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we must have BAG = −∇·
(
(g/f)ẑ×HUAG

)
, which is precisely the extra (ageostrophic)

term in (3.2a). As for the boundary term in (3.8b), it vanishes for arbitrary δh by
(2.10). Thus the ageostrophic contribution to the generalized Bernoulli function (3.2a)
and the boundary condition (2.10) are precisely what is required for steady flows to
be constrained extremals of H in Salmon’s model. Of course, this is no accident; it
is a consequence of the Hamiltonian structure of the model.

With these choices of C(·) and λi, the finite-amplitude pseudoenergy (3.3) can be
written in the form

A =

∫ {
1
2
(H + h′)|u′G|2 + h′UG · u′G + 1

2
g(h′)2 + (H + h′)

∫ q′

0

[C ′(Q+ ξ)−C ′(Q)]dξ

}
dx,

(3.9)
with the disturbance potential vorticity given by

q′ ≡ q − Q =
ẑ · (∇× u′G)− Qh′

H + h′
. (3.10)

Left in this form, A is identical to the pseudoenergy for the shallow-water equations
(Shepherd 1992), with U and u′ replaced by UG and u′G. Following Ripa (1983), (3.9)
may be re-written as

A =

∫ {
1

2(H + h′)

∣∣(H + h′)u′G + UGh
′∣∣2 +

1

2

(
g − |UG|2

H + h′

)
(h′)2

+ (H + h′)

∫ q′

0

[C ′(Q+ ξ)− C ′(Q)]dξ

}
dx. (3.11)

The small-amplitude (quadratic) approximation to (3.11) is seen to be positive definite
for arbitrary disturbances whenever

|UG|2 < gH (3.12a)

and

C ′′(Q) =
∇B
Q∇Q =

∇Ψ
∇Q > 0, (3.12b)

which is the analogue of Ripa’s (1983) shallow-water stability theorem for Salmon’s
model. Condition (3.12b) corresponds to that of Arnol’d’s (1966) first stability the-
orem, and is a sufficient condition for stability in the QG model. Condition (3.12a)
corresponds to a ‘subsonic’ condition (Ripa 1983), in the sense that the (geostrophic)
basic flow speed must be everywhere less than the minimum gravity-wave phase
speed. The physical interpretation of Ripa’s theorem in the shallow-water case is
that (3.12b) ensures stability of the balanced dynamics, while (3.12a) ensures that the
gravity waves cannot interact with the balanced dynamics; Ford (1993, Chapter 3)
has shown for a particular parallel jet flow that when the latter condition is violated, a
coupled vortical/gravity-wave instability arises. (See also Nore & Shepherd 1997, §7.)
Although Salmon’s model eliminates the inertia–gravity waves, it retains the coastal
Kelvin waves which also have phase speeds greater than or equal to (gH)1/2 (Allen
et al. 1990a).

There are two important limitations of Ripa’s (1983) theorem. The first is that it
does not generalize to continuously stratified flow (Ripa 1991). The second is that it
does not extend to finite amplitude, since from (3.11) the subsonic condition would
then have to hold with respect to the actual fluid depth H + h′, and there is nothing
in the dynamics to prevent H + h′ from becoming arbitrarily small (Shepherd 1992).
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A notable feature of (3.9) is that it does not contain any boundary terms. However,
we have not exploited the fact that u′G and h′ are related by fu′G = gẑ×∇h′. Applying
this constraint, (3.9) becomes

A =

∫ {
g2

2f2
(H + h′)|∇h′|2 +

1

2

[
g − ∇ ·

(g2

f2
∇N
)]

(h′)2

+(H + h′)

∫ q′

0

[C ′(Q+ ξ)− C ′(Q)]dξ

}
dx+

∑
i

∮
∂Di

g2

2f2
∇N · n̂(h′)2ds. (3.13)

We thus see that applying the geostrophic constraint produces a boundary contribu-
tion to the pseudoenergy. Such a boundary contribution is also found in SG dynamics
(Kushner & Shepherd 1995b), but not in QG dynamics (McIntyre & Shepherd 1987).

In contrast to (3.11), the form (3.13) of the pseudoenergy may be used to derive a
nonlinear stability theorem. In particular,A is seen to be positive definite and convex
whenever there exist constants c1, c2, k1, k2, b

(i)
1 and b(i)

2 such that

0 < c1 6 C
′′(Q) =

∇Ψ
∇Q 6 c2 < ∞, (3.14a)

0 < k1 6 f − ζG −
UG

f

df

dy
6 k2 < ∞, (3.14b)

0 < b
(i)
1 6

g

f
∇N · n̂ 6 b(i)

2 < ∞ on ∂Di, (3.14c)

where ζG ≡ ẑ · (∇×UG) and UG ≡ −(g/f)dN/dy. Defining new disturbance variables
according to

q̃ ≡ (H + h′)1/2q′, m ≡ (H + h′)1/2∇h′ (3.15)

(this transformation is always smooth since h = H + h′ > 0), and introducing the
disturbance norm†

‖h′‖2 ≡
∫

1

2

{g2

f2
|m|2 +

g

f
k1(h

′)2 + c1q̃
2
}

dx+
∑
i

∮
∂Di

gb
(i)
1

2f
(h′)2ds (3.16)

(note that f 6= 0 by hypothesis), it follows that

‖h′(t)‖2 6A(t) =A(0) 6 max
{c2

c1

,
k2

k1

,
b

(i)
2

b
(i)
1

}
‖h′(0)‖2. (3.17)

The inequalities (3.17) establish nonlinear Liapunov stability of any steady basic flow
satisfying (3.14).

We now consider the interpretation of the stability conditions (3.14). Condition
(3.14a), like (3.12b), corresponds to that of Arnol’d’s (1966) first stability theorem.
Condition (3.14b), which ensures positivity of the factor multiplying (h′)2 in (3.13), is
assured of being true if the basic flow has small Rossby number. Finally, condition
(3.14c) requires that the basic flow be cyclonic on lateral boundaries. This condition
is the same as that found for the SG model (Kushner & Shepherd 1995b). As
discussed by Kushner & Shepherd, the combination of (3.14a) and (3.14c) can be
understood in terms of the possible interactions between interior disturbances and
coastal Kelvin waves. Kushner et al. (1997) present an example (in the context of

† This is not a norm in h′, but rather in the composite variables (m, h′, q̃); nevertheless we write
‖h′‖ since (3.16) is a functional of h′.
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the stratified SG model) where violation of condition (3.14c) leads to a phase-locked
instability between counterpropagating coastal Kelvin waves on opposite walls of
a channel.

Thus we see that Salmon’s model possesses two distinct kinds of stability theorems.
The first, corresponding to conditions (3.12), is analogous to Ripa’s shallow-water
theorem, and does not extend to finite amplitude. The second, corresponding to
conditions (3.14), is analogous to the SG theorem of Kushner & Shepherd (1995b),
and does extend to finite amplitude. In both cases, the stability conditions consist of
Arnol’d’s condition plus an additional condition that prevents phase-locked coupling
between coastal Kelvin waves and the rest of the dynamics (either the interior
dynamics, or other coastal Kelvin waves if there is more than one lateral boundary).
The subsonic condition (3.12a) is sufficient for this, but is too crude: it does not take
account of the fact that the only gravity waves in Salmon’s model are boundary-
trapped (so the subsonic condition should only be required at the boundaries), or
the fact that these waves are unidirectional. These two facts are reflected in the
cyclonic flow condition (3.14c), which ensures that the basic flow at the boundaries
acts to speed up rather than slow down the coastal Kelvin waves. However this
condition is also too crude, insofar as anticyclonic flow at the boundaries should not
be destabilizing so long as it is subsonic.

That the stability criteria of the two theorems are indeed complementary is illus-
trated by the following example. Consider a periodic zonal channel −Y 6 y 6 Y on
an f-plane, with the basic flow

UG(y) = u0 sinh λy, H(y) = H0 − γ cosh λy − fu0

gλ
cosh λy. (3.18)

First consider the case u0 > 0 and γ = 0, corresponding to anticyclonic flow over
a flat bottom. Then condition (3.14c) does not apply. But it is easy to see that
for sufficiently large H0 (other parameters being fixed), this basic flow can satisfy
conditions (3.12a, b). Now consider the case u0 < 0 and γ = f|u0|/gλ, corresponding
to cyclonic flow along a valley. Then H(y) = H0, and conditions (3.14a) and (3.14c)
hold automatically. Condition (3.14b) will hold if

|u0|λ cosh λy < f (3.19)

for all y, while condition (3.12a) will fail if

u2
0 sinh2 λy > gH0 (3.20)

for some y. It is enough for the inequalities (3.19) and (3.20) to be satisfied at the
channel wall y = Y , which can be made to happen (for appropriate choices of u0 and
Y ) provided λ < f/(gH0)

1/2. This latter condition corresponds to the lengthscale of
the basic flow being greater than the Rossby deformation radius, which is precisely
what is required in order to have the Froude number greater than unity, namely
(3.20), while keeping the Rossby number less than unity, namely (3.19).

We have therefore shown that there exist basic flows satisfying (3.12) but not (3.14),
as well as basic flows satisfying (3.14) but not (3.12); the two stability theorems have
overlapping but distinct criteria. However, the theorem corresponding to (3.14) has
the advantage of being fully nonlinear.
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4. Steady basic flows with spatial symmetry

4.1. Zonally symmetric basic flows

We first consider the case where the basic flow (and domain geometry) is zonally
symmetric, i.e. ∂/∂x = 0 for all basic-flow fields and ∂hB/∂x = 0. In this case,
the basic flow must be zonal and geostrophic. (The latter follows from (A 2) and
(2.10).) We can now include the momentum invariant of Salmon’s model together
with the energy, Casimir and circulation invariants to produce the wave-activity
invariant

A[H; h] ≡
(
H+ αM+ C+

∑
i

λiΓi

)
[h]−

(
H+ αM+ C+

∑
i

λiΓi

)
[H], (4.1)

where α is a free parameter. The extremal condition δA = 0 may be seen (see
Appendix B) to be satisfied by the choice

C(ξ) = ξ

(∫ ξ

0

[K + αG](γ)

γ2
dγ + c

)
(c is an arbitrary constant) (4.2)

as well as (3.5), where the (possibly multivalued) function G(·) is defined by G
(
Q(y)

)
=

UG(y)− F(y) for all y. At the basic state, we then have

C ′(Q) =
C + B + α(UG − F)

Q
and

d

dy
C ′(Q) =

By

Q
− αH, (4.3)

and (4.1) takes the form

A =

∫ {
1
2
(H+h′)|u′G|2 +h′(UG+α)u′G+ 1

2
g(h′)2 +(H+h′)

∫ q′

0

[C ′(Q+ξ)−C ′(Q)]dξ

}
dx.

(4.4)

As with (3.9), we may obtain an analogue of Ripa’s (1983) small-amplitude stabil-
ity theorem from (4.4): the basic flow is stable if a value of α can be found for
which

(UG + α)2 < gH (4.5a)

and

C ′′(Q) = −UG + α

Qy
> 0. (4.5b)

These conditions correspond to (3.12a, b) applied to a geostrophic zonal basic flow,
allowing for an arbitrary Galilean boost to UG.

The form (4.4) of the wave-activity invariant involves no boundary contributions.
However, boundary contributions are produced upon using the geostrophic constraint,
which yields

A =

∫ {
g2

2f2
(H + h′)|∇h′|2 +

1

2

[
g − d

dy

(g2

f2

dN

dy

)
− α g

f2

df

dy

]
(h′)2

+(H + h′)

∫ q′

0

[C ′(Q+ ξ)− C ′(Q)]dξ

}
dx−

∑
i

∮
∂Di

g

2f
(UG + α)n̂ · ŷ(h′)2ds. (4.6)

Evidently A is positive definite and convex whenever there exists a value of α and
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constants c1, c2, k1, k2, b
(i)
1 and b(i)

2 such that

0 < c1 6 C
′′(Q) = −H(UG + α)

Qy
6 c2 < ∞, (4.7a)

0 < k1 6 f − ζG −
(UG + α)

f

df

dy
6 k2 < ∞, (4.7b)

0 < b
(i)
1 6 −(UG + α)n̂ · ŷ 6 b(i)

2 < ∞ on ∂Di. (4.7c)

These three conditions correspond to the pseudoenergy-based stability conditions
(3.14) applied to a geostrophic zonal basic flow, allowing for an arbitrary Galilean
boost to UG. Defining a disturbance norm by (3.16), the inequalities (3.17) again follow.
This establishes nonlinear stability of any steady zonally symmetric geostrophic basic
flow satisfying (4.7) for some α.

It is interesting to consider what happens when the energy is not used in the
wave-activity construction (4.1), in which case A is just the pseudomomentum. The
results may be formally extracted from (4.2)–(4.4) by taking the limit α→ ±∞, after
rescaling A and C(·) by α. Evidently the analogue of Ripa’s theorem is lost, while
the constrained version of A takes the form

A =

∫ {
− g

2f2

df

dy
(h′)2 + (H + h′)

∫ q′

0

[C ′(Q+ ξ)− C ′(Q)]dξ

}
dx

−
∑
i

∮
∂Di

g

2f
n̂ · ŷ(h′)2ds, (4.8)

where C(·) is given by (4.2) with K ≡ 0 and α = 1. The lateral boundary contributions
to the pseudomomentum (4.8), which are not present in QG dynamics (Shepherd
1989), are consistent with what is found in SG dynamics (Kushner & Shepherd
1995a). Since we have assumed a zonally symmetric domain, any boundary must be
a wall at constant y, and there are only four choices: (i) no boundaries; (ii) northern
boundary only, y 6 y2; (iii) southern boundary only, y1 6 y; or (iv) zonal channel,
y1 6 y 6 y2. A northern boundary will always give a negative contribution to A,
while a southern boundary will always give a positive contribution; this agrees with
the SG case provided one restricts attention to small Rossby number.

With no boundaries,A is sign-definite if Qy > 0 in the variable-f case, or if Qy 6= 0
in the f-plane case. The latter case is analogous to the QG Charney–Stern theorem
(Shepherd 1989). With a northern boundary only,A is sign-definite if Qy > 0 in both
the variable-f and f-plane cases. With a southern boundary only,A is sign-definite if
Qy < 0 in the f-plane case. Finally, in the case of a zonal channel with two boundaries,
no stability result is forthcoming. In all the above stability conditions, the f-plane
cases are the same as in the SG model (Kushner & Shepherd 1995a).

4.2. Axisymmetric basic flows

For completeness, we consider the case where the basic flow (and domain geometry)
is axisymmetric; this requires f(y) = const. Because the basic flow has curvature, its
ageostrophic component must be non-zero (except at lateral boundaries); the basic-
flow curvature is weak in the relevant sense, and thus consistent with the scaling
assumptions of Salmon’s model, provided the Rossby number is small. The analysis
proceeds exactly as in §4.1, with the substitutions

M→J, G(·)→ L(·) with L(Q(r)) = WG(r) + 1
2
fr2, (4.9)
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where WG ≡ ẑ · (x × UG) = (rg/f)dN/dr. This leads to the finite-amplitude wave-
activity invariant

A =

∫ {
1
2
(H+h′)|u′G|2+h′

(WG

r2
+α
)
w′G+ 1

2
g(h′)2+(H+h′)

∫ q′

0

[C ′(Q+ξ)−C ′(Q)]dξ

}
dx.

(4.10)

In this case the analogue of Ripa’s small-amplitude stability theorem is that the basic
flow is stable if a value of α exists such that(WG

r
+ αr

)2

< gH (4.11a)

and

C ′′(Q) =
Ψr + αrH

Qr
> 0. (4.11b)

On the other hand, after the geostrophic constraint is imposed A takes the form

A =

∫ {
g2

2f2
(H + h′)|∇h′|2 +

1

2

[
g − 1

r

d

dr

(
r
g2

f2

dN

dr

)
− 2α

g

f

]
(h′)2

+ (H + h′)

∫ q′

0

[C ′(Q+ ξ)− C ′(Q)]dξ

}
dx

+
∑
i

∮
∂Di

g

2f

(WG

r
+ αr

)
n̂ · r̂(h′)2ds. (4.12)

Evidently A is positive definite and convex, and nonlinear stability is provable,
whenever there exists a value of α and constants c1, c2, k1, k2, b

(i)
1 and b(i)

2 such that

0 < c1 6 C
′′(Q) =

Ψr + αrH

Qr
6 c2 < ∞, (4.13a)

0 < k1 6 f − ζG − 2α = f − 1

r

d

dr

(
WG + αr2

)
6 k2 < ∞, (4.13b)

0 < b
(i)
1 6

(WG

r
+ αr

)
n̂ · r̂ 6 b(i)

2 < ∞ on ∂Di. (4.13c)

There is no need to discuss these conditions in any detail, except in the special case
of an unbounded domain where certain differences with the zonally symmetric case
emerge. In that case, taking r →∞ in (4.11a) requires α = 0. But then (4.11b) requires
Ψr/Qr > 0, which will be difficult to satisfy. (Nore & Shepherd 1997, Appendix A,
show that the corresponding condition for the shallow-water system can never be
satisfied for a localized vortex; the same result holds for QG dynamics.) On the other
hand, in an unbounded domain the boundary contributions to (4.12) disappear, and
condition (4.13c) drops out, provided WG is finite at r = 0, WG(h′)2 → 0 as r →∞, and
r2(h′)2 → 0 as r →∞. The last condition is required in any case for finite disturbance
energy. Then the stability conditions (4.13) are essentially analogous to those of QG
dynamics, and one is free to take α 6= 0. If the energy is not used in the construction
of A (in which case the wave-activity invariant is just the angular pseudomomentum),
then the resulting stability condition is Qr < 0. This differs from the QG axisymmetric
Charney–Stern theorem, which requires only that Qr 6= 0; in Salmon’s model, only
cyclonic vortices appear to be provably stable using the angular pseudomomentum
alone.
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5. Summary and discussion

The symmetry-based conservation laws of Salmon’s (1983) model of nearly geo-
strophic shallow-water dynamics have been used to derive exact nonlinear wave-
activity invariants and stability theorems for disturbances to steady flows. It is shown
that steady solutions of Salmon’s model must have a non-vanishing ageostrophic
flow component unless the flow is straight. The extremal condition δA = 0 is shown
to imply a boundary condition for this ageostrophic flow component, as well as an
ageostrophic correction to the Bernoulli function, which are identical to those derived
by Salmon (1983 and unpublished notes) and Allen & Holm (1996) directly from
Hamilton’s principle. This boundary condition (2.10) is shown to be accurate for
weakly curved boundaries. The presence of lateral boundaries produces boundary
contributions to the wave-activity invariants, once the geostrophic constraint is incor-
porated, and these boundary terms affect the stability criteria. It must be emphasized
that these boundary terms represent real physical effects associated with the existence
of coastal Kelvin waves in both the SG model and Salmon’s model (Allen et al.
1990a; Kushner et al. 1997). Such boundary terms do not arise in the QG model,
which does not support coastal Kelvin waves.

Salmon’s model (in the shallow-water context) is found to possess two distinct kinds
of stability theorems: an analogue of Ripa’s (1983) small-amplitude stability theorem
for shallow-water flow, and finite-amplitude analogues of Kushner & Shepherd’s
(1995a, b) SG stability theorems. That the two kinds of theorems have complementary
stability conditions is demonstrated by an explicit example. In both cases, the stability
conditions consist of Arnol’d’s (1966) condition ∇Ψ/∇Q > 0 plus an additional
condition that serves to limit the interactions between coastal Kelvin waves and the
rest of the dynamics. In the first case, the additional condition is that the Froude
number be less than unity; and in the second case, that the flow be cyclonic along
lateral boundaries (there is also one other condition that is satisfied if the Rossby
number is less than unity). Physically, either condition ensures that the coastal Kelvin
waves in Salmon’s model – which propagate cyclonically at phase speeds greater
than (gH)1/2 – cannot be Doppler-shifted into phase-locked interactions with the
low-frequency interior dynamics, or with a coastal Kelvin wave on another boundary.
No such additional stability condition is required in QG dynamics.

A significant technical difference with the SG analysis of Kushner & Shepherd
(1995a, b) is that the latter found it necessary to work in transformed isentropic-
geostrophic coordinates, in order to deal with the potential-vorticity invertibility
principle of SG dynamics; this enormously complicated the treatment of the bound-
ary dynamics, and led to a number of unsatisfactory restrictions on the results –
particularly at finite amplitude. These technical difficulties would be expected to arise
with any model formulated in transformed coordinates, including Salmon’s (1985)
generalized SG model. The present analysis, in contrast, has been performed entirely
in physical coordinates, and the boundary contributions are therefore easy to han-
dle. In particular, it is clearly seen how the geostrophic constraint produces lateral
boundary contributions to wave-activity invariants.

Detailed comparison of analytical and numerical solutions of approximate shallow-
water models (Allen et al. 1990a, b; Barth, Allen & Newberger 1990) has shown that
Salmon’s (1983) model is not as accurate as other balanced models that do not
possess symmetry-based conservation laws. However, Salmon’s model represents an
important prototype for potentially more accurate constrained Hamiltonian balanced
models, as has recently become evident from the work of Allen & Holm (1996) and
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McIntyre & Roulstone (1997). Those studies show that constraining the velocity to
the mass field within a Hamiltonian context leads to a balanced shallow-water model
having the form

∂uC
∂t

+ qhẑ × u = −∇b, (5.1a)

∂h

∂t
+ ∇ · (hu) = 0, (5.1b)

where uC is the constraint velocity, which appears in all conservation laws (2.3)–(2.7),
u is the particle (i.e. advecting) velocity, b is the appropriate generalized Bernoulli
function, and q ≡ [f + ẑ · (∇ × uC)]/h is the potential vorticity associated with the
constraint velocity. Salmon’s (1983) model is just the special case uC = uG. It is easy
to see that (5.1a, b) imply qt + u · ∇q = 0. Steady solutions of such a model will
clearly satisfy the Bernoulli relationship (3.1), and a pseudoenergy invariant (3.3) for
disturbances to a steady basic flow will therefore be constructable as in §3 with the
relations (3.4)–(3.6). The properties (3.7) will again hold, and it is easy to verify that
the extremal condition will then reduce to

δA =

∫ {
−B′δh− ẑ ·

(
∇Ψ ′ × δuC

)}
dx, (5.2)

where B′ is the difference between B and the usual Bernoulli function evaluated
using the constraint velocity, i.e. B′ ≡ B − gN − |UC |2/2, and Ψ ′ is defined by
H(U−UC) = ẑ×∇Ψ ′. The expression (5.2) is the generalization of (3.8a), and reflects
the velocity-split nature of this class of models. The term involving δuC will then be
expressible in terms of some differential operator on δh, whose inversion will yield
a boundary contribution to δA. Thus the extremal condition δA = 0 will produce
a boundary condition for (U − UC) as well as an expression for B′, which are the
generalizations of (2.10) and (3.2a). The expression (3.9) for the pseudoenergy will
then apply, with UG and u′G replaced by UC and u′C , respectively, and an analogue
of Ripa’s theorem corresponding to (3.12) will follow. Whether a nonlinear stability
theorem analogous to (3.14) can be obtained after expressing u′C in terms of h′ will,
of course, depend on the particular form of the constraint. In a completely analogous
way, the expressions (4.4) and (4.10), and the small-amplitude stability conditions
(4.5) and (4.11), will also apply to such general constrained Hamiltonian balanced
models, with the obvious substitutions.

The fact that the class of general constrained Hamiltonian balanced models dis-
cussed above possesses analogues of Ripa’s theorem suggests that the coastal Kelvin
waves in such models must have phase speeds c greater than or equal to (gH)1/2,
in the light of the subsonic condition (3.12a). This is intriguing, because Salmon’s
model stands out as the only balanced model considered by Allen et al. (1990a)
with c > (gH)1/2; all the others (with the exception of the QG model, which filters
the coastal Kelvin waves) have c < (gH)1/2. (In all cases, including Salmon’s model,
c→ (gH)1/2 in the low-frequency, long-wave limit.) Of the latter models, only the SG
model is Hamiltonian, and as noted by McIntyre & Roulstone (1997) the SG model
does not fit into the above framework. Allen & Holm (1996) show that the SG model
can indeed be cast in the form (5.1) with a certain choice of uC , but at the price of
changing the natural definition of H: u in (2.3) is replaced by uG, not by uC . Thus
there is no contradiction between our general results and the known properties of the
SG model. (In particular, the SG model does not appear to possess an analogue of
Ripa’s theorem.)
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In order to better understand this dichotomy, we briefly review the nature of the
dispersion relation for coastal Kelvin waves. Allen et al. (1990a, §4b) show that the
coastal Kelvin waves in all the balanced models they consider, except Salmon’s model,
have phase speeds given by

c =
f

`
, (5.3)

where ` is the inverse of the e-folding (trapping) scale, which is in accordance with
the shallow-water equations. For the shallow-water equations, ` = f/(gH)1/2 so that
c = (gH)1/2, where H is the (uniform) depth of the undisturbed fluid. The balanced
models, however, introduce the distortion

` =
f

(gH)1/2

(
1 +

gHk2

f2

)1/2

, (5.4)

where k is the along-coast wavenumber, and this has the effect of slowing down the
coastal Kelvin waves in the high-frequency large-k limit. Salmon’s model contains the
distortion (5.4), but also introduces a further distortion in that (5.3) is replaced by

c =
gH`

f
. (5.5)

The distortion (5.5) is a consequence of the ageostrophic contribution to the Bernoulli
function (3.2a), and has the effect of speeding up the coastal Kelvin waves in the
high-frequency large-k limit.

It is easy to show that the coastal Kelvin waves in the general constrained Hamil-
tonian balanced models discussed above must, as with Salmon’s model, have phase
speeds greater than or equal to (gh1/2). For such models, the small-amplitude pseu-
doenergy E and pseudomomentum P associated with zero-q′ disturbances to a resting
basic state reduce to

E =

∫ {
1
2
H |u′C |2 + 1

2
g(h′)2

}
dx, P =

∫
h′u′Cdx. (5.6)

The phase speed c of a steadily propagating distrubance is give by c = E/P (e.g.
Shepherd 1994), and by completing the square it is easy to see from (5.6) that
E > (gh)1/2 |P|.

The different nature of the large-k distortion of the coastal Kelvin waves in the
two kinds of balanced models has certain implications. Allen et al. (1990) argue that
the ‘supersonic’ distortion of Salmon’s model is unattractive because it could lead to
numerical problems. Such problems could, of course, be overcome with a semi-implicit
time-stepping scheme. On the other hand, it could be argued that the ‘supersonic’
distortion has the merit of reducing the strength of the interactions between the
large-k coastal Kelvin waves – which are in any case not well represented in any
balanced model – and the rest of the balanced dynamics. Such interactions are, in
contrast, potentially allowed in the other balanced models which contain a ‘subsonic’
distortion, and could lead to physically spurious results. In particular, flows that were
provably stable in shallow-water dynamics according to Ripa’s theorem might be
unstable in such models. This is an interesting prospect for further investigation.

Balanced models are intended to be reduced descriptions of an underlying ‘primitive’
dynamics. It is therefore arguable that any flow that is stable under the primitive
dynamics ought also to be stable under any physically reasonable balanced dynamics.
(Though not vice versa.) The fact that Salmon’s model contains an analogue of Ripa’s
shallow-water stability theorem is, therefore, a point very much in its favour.
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Appendix A. Equations for uAG
Differentiating (2.1b) with respect to either x or y and using (2.8) yields evolution

equations for the two components of geostrophic velocity. Consistency between those
evolution equations and (2.9) then yields an implicit determination of uAG via the two
equations{g

f
∇2 − q

}
(hvAG) +

g

f2

df

dy

∂

∂x
(huAG) = −g

f

∂2(huG)

∂x∂y
− g

f

∂2(hvG)

∂y2
+ hqvG −

∂BG

∂x
, (A 1)

{
∇2− fq

g

}(gh
f
uAG

)
+
g

f2

df

dy

∂

∂x
(hvAG) = −g

f

∂2(hvG)

∂x∂y
− g
f

∂2(huG)

∂x2
+hquG+

∂BG

∂y
, (A 2)

where BG is the geostrophic Bernoulli function. For given h, (A 1)–(A 2) represents
a coupled set of linear elliptic second-order differential equations for uAG and vAG.
The equations have a unique solution for uAG and vAG for given boundary values in a
closed domain provided q > 0 (Courant & Hilbert 1962, §IV.7.2). The condition q > 0
is guaranteed for small Rossby number, and will hold for all time if it holds initially.
The two boundary conditions (2.2) and (2.10) determine two orthogonal components
of uAG (for given h), and therefore provide the needed boundary values for uAG and
vAG. A unique solution also exists if the domain is periodic in one or both directions.
For unbounded domains, on the other hand, it is difficult to make definite statements
about the solution properties of (A 1)–(A 2).

Appendix B. Variational relationships
The following variational relationships are useful for verifying the analysis of
§§3–4:

δuG =
g

f
ẑ × ∇δh, δη = δh, (B 1)

hδq = ẑ · (∇× δuG)− qδh = ∇ ·
(g
f
∇δh

)
− qδh, (B 2)

δH =

∫ {
huG · δuG +

(
1
2
|uG|2 + gη

)
δη
}

dx

=

∫ { g2

2f2
|∇η|2 + gη − ∇ ·

(g2h

f2
∇η
)}
δhdx+

∑
i

∮
∂Di

g2h

f2
(∇η · n̂)δhds, (B 3)

where ds is arclength along ∂Di,

δC =

∫ {
C(q)δh+ hC ′(q)δq

}
dx

=

∫ {[
C(q)− qC ′(q)

]
δh− ẑ ·

(
∇C ′(q)× δuG

)}
dx+

∑
i

∮
∂Di

C ′(q)δuG · d`
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=

∫ {
C(q)− qC ′(q) + ∇ ·

(g
f
∇C ′(q)

)}
δhdx

+
∑
i

∮
∂Di

g

f

[
C ′(q)∇δh · n̂− (∇C ′(q) · n̂)δh

]
ds, (B 4)

δΓi =

∮
∂Di

δuG · d` =

∮
∂Di

g

f
(∇δh · n̂)ds, (B 5)

δM =

∫ {
(uG − F)δh+ hδuG

}
dx =

∫ {
uG − F +

∂

∂y

(gh
f

)}
δhdx−

∑
i

∮
∂Di

gh

f
δhds,

(B 6)

δJ =

∫ {(
wG + 1

2
fr2
)
δh+ hδwG

}
dx

=

∫ {
wG + 1

2
fr2 − 1

r

∂

∂r

(
r2gh

f

)}
δhdx+

∑
i

∮
∂Di

rgh

f
δhds, (B 7)

where wG ≡ ẑ · (x× uG) = (rg/f)∂η/∂r.
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